Chapter 23: Electrostatic Energy \& Capacitance Thursday September $22^{\text {nd }}$

- Capacitance
- Definition
- Review parallel plate example
- Electrostatic potential energy stored in capacitors
- Analogy with springs
- Constant charge/constant voltage
-Capacitors in series and parallel
- Demonstration and example
- Dielectrics and capacitance
- Demonstration

Reading: up to page 393 in the text book (Ch. 23)

Capacitors

- Used to store energy in electromagnetic fields [in contrast to batteries (chemical cells) that store chemical energy].
- Capacitors can release electromagnetic energy much, much faster than chemical cells. They are thus very useful for applications requiring very rapid responses.

Capacitors

- The transfer of charge from one terminal of the capacitor to the other creates the electric field.
- Where there is an electric field, there must be a potential difference, leading to the following definition of capacitance C :

$$
C=\frac{Q}{\Delta V} \quad \text { or } \quad Q=C \Delta V
$$

- Q represents the magnitude of the excess charge on either plate. Another way of thinking of it is the charge that was transferred between the plates.

$$
\text { SI unit of capacitance: } \quad 1 \text { farad }(\mathrm{F})=1 \text { coulomb } / \text { volt }
$$

(after Michael Faraday)

Capacitors

-The energy really is stored in the electromagnetic fields.
-In fact, these fields possess energy and momentum, so you might think of the capacitor as a fly-wheel, though it is more common to think of capacitors as the electrical analog of springs (as will become apparent in a moment).

The Parallel Plate Capacitor (standard example)

Conducting plates with area A are a small distance d apart.

Field inside is
essentially uniform.
Field outside \qquad
is negligible.

The Parallel Plate Capacitor (standard example)

$$
\begin{aligned}
& \text { Two parallel conducting plates } \\
& \Delta V=-E_{x} \Delta x=-\frac{Q}{A \varepsilon_{0}} d \\
& \text { When defining capacitance, } \\
& \text { we do not worry about sign of } \\
& \text { potential, i.e., capacitance is } \\
& \text { always positive } \\
& \Rightarrow C=\frac{Q}{|\Delta V|}=\frac{\varepsilon_{\mathrm{o}} A}{d} \\
& +Q
\end{aligned}
$$

Energy stored in a Capacitor

Energy stored in a Capacitor

$$
V^{\prime}=2 \frac{d q}{C}
$$

$$
\begin{gathered}
+2 d q \\
\rightleftharpoons-2 d q
\end{gathered}
$$

$$
U=d q \times V
$$

$$
+d q \times V^{\prime}
$$

Energy stored in a Capacitor

Energy stored in a Capacitor

$$
\begin{aligned}
& \AA \quad U=\int d q \times V(q) \\
& \begin{array}{lll}
V(q)=\frac{q}{C} & \stackrel{+q}{+} & =\int d q \times \frac{q}{C} \\
\square & =\frac{q^{2}}{2 C}
\end{array} \\
& U=\frac{(C V)^{2}}{2 C}=\frac{1}{2} C V^{2} \\
& q
\end{aligned}
$$

Energy stored in a Capacitor

$$
\begin{aligned}
& U=\frac{q^{2}}{2 C}=\frac{(C V)^{2}}{2 C}=\frac{1}{2} C V^{2} \\
& =\frac{q^{2}}{2 C}=\frac{1}{2} \frac{q}{C} q=\frac{1}{2} q V \\
& V(q) \\
& \text { ke energy } \\
& \text { in a spring }
\end{aligned}
$$

Just like energy stored in a spring

Capacitors connected in series

$$
\frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}
$$

In fact:

$$
\frac{1}{C_{e q}}=\sum_{n} \frac{1}{C_{n}}
$$

Capacitor with dielectric between plates

Linear materials:

$$
E_{0}=\left(1+\chi_{e}\right) E
$$

Isolated capacitor:

Capacitance increases:

$$
\Delta V=\frac{\Delta V_{0}}{\kappa_{e}}=\frac{1}{\kappa_{e}} \frac{Q d}{A \varepsilon_{o}}
$$

$$
\Rightarrow \quad C_{e f f}=\frac{Q}{\Delta V}=\kappa_{e} \frac{\varepsilon_{o} A}{d}=\kappa_{e} C
$$

